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Introduction

Cardiovascular diseases are the major cause of mortality and
morbidity in the industrialized world, while their incidents are
on fast ascendancy in developing countries.1 According to the
World Health Organization, 16.7 million people died worldwide
of cardiovascular diseases in 2002, accounting for one-third of
all deaths globally. By 2020 heart disease and stroke will
become the leading cause of both death and disability in the
world with the number of fatalities projected to increase to more
than 20 million a year.2,3 Approximately 40% of the 2.4 million
deaths that occurred in the United States in 2002 were attributed
to cardiovascular and cerebrovascular diseases with similar
statistics prevailing in the European Union.4,5 Nearly 71 million
adults in the U.S. have one or more types of cardiovascular
disease, resulting in a staggering cost of 403 billion dollars to
the U.S. economy.6

Coronary artery disease (CADa) is the leading cause of
cardiovascular death, resulting in over half a million deaths
annually in the U.S. alone.6,7 The underlying culprit for CAD
is atherosclerosis, which often has its insidious onset in early
adulthood and remains undetected until symptoms manifest at

a late stage.8-10 Progressive luminal thickening due to an
advancing atherosclerotic lesion often gives rise to symptoms
of stable angina characterized by exertion-induced chest pain.
However, most cardiovascular mortality and morbidity are
associated with acute clinical manifestations of CAD usually
triggered by rupture of a vulnerable atherosclerotic plaque.11-14

The ensuing events lead to a spectrum of clinical conditions
known as acute coronary syndrome (ACS) that include Q-wave
myocardial infarction, non-Q-wave myocardial infarction, and
unstable angina.15-18

Therapeutic approaches to CAD are twofold: reducing
cardiovascular risk factors and treatment of ACS and related
disorders.19-22 Since the initial publication of the Framingham
studies, great strides have been made in the prevention of
cardiovascular disorders by reducing predisposing risk factors
such as hypertension, hypercholesteremia, diabetes, and
obesity.23-25 There has been considerable education offered to
the public with regard to life-style changes and smoking
cessation also.26-28 As a result of these efforts, the upsurge of
cardiovascular diseases has substantially slowed.7 Similar
advances have been made in the treatment of acute coronary
syndrome using innovative surgical interventions and modern
pharmacological therapy.29-32

Antithrombotic agents are the mainstay of pharmacological
therapy for acute coronary syndrome.33,34 Mechanistically, the
function of antithrombotic agents is either to prevent the
formation of thrombi in the blood vessels or to dissolve the
existing ones and restore blood flow.35-38 Currently available
antithrombotic agents can be classified intoanticoagulants,
antiplatelet agents, andfibrinolytic agents. The anticoagulants
work either by modulating the endogenous levels of the key
coagulation enzyme thrombin or by inactivating its enzymatic
activity.39-41 Antiplatelet agents inhibit platelet activation and
aggregation, a key process of hemostasis and thrombus forma-
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tion.42,43 Fibrinolytic agents, which are intravenously adminis-
tered under clinical emergency, work by lysis of existing clots
and restore blood flow in occluded vessels.44-46

At the center of the antithrombotic therapy is the serine
protease thrombin, the main effector protease of the coagulation
cascade, which is produced from its zymogen, prothrombin, by
factor Xa which is the convergent common product of the
extrinsic and intrinsic pathways of the coagulation cascade
(Figure 1).47-52 Thrombin is locally produced on the cell surface
near its site of action upon activation of the coagulation cascade
triggered by injury, and it is short-lived in plasma circulation.47

Thrombin orchestrates a multifaceted regulatory role in the
coagulation cascade by regulating its own level through the
balancing of procoagulatory and anticoagulatory mechanisms.
In its best known coagulatory function, thrombin proteolytically
converts soluble fibrinogen to fibrin monomers, which polymer-
ize to form an insoluble meshwork that becomes the integral
part of a thrombus. Additionally, thrombin activates platelets
causing them to aggregate at the site of vascular lesion
contributing to thrombus formation. In fact, thrombin is the most
potent platelet activator. A burgeoning thrombus, usually
superimposed over a ruptured plaque, can lead to occlusive
cardiovascular disorders such as unstable angina and acute
myocardial infarction. In its anticoagulant role, thrombin
activates the protein C system to inhibit its own production.
An ideal antithrombotic agent would produce a sufficient
therapeutic window between the pathophysiological role of
thrombin in thrombus formation and its normal life-sustaining
hemostatic functions. As discussed below, the current anti-
thrombotic therapy falls far short of this goal.

Anticoagulants

Anticoagulants target inhibition of the enzymes of the
coagulation cascade, including thrombin.49,51,53Depending on
their mode of action, anticoagulants are classified as either
indirect thrombin inhibitorsor direct thrombin inhibitors.54,55

Indirect thrombin inhibitors curtail the endogenous production
of thrombin at the site of injury by inhibiting blood factors of
the coagulation cascade or by activating endogenous anti-
coagulation mechanisms.56,57 The best known and long used
indirect thrombin inhibitors are coumarins and heparins. The
coumarins inhibit vitamin K-dependent post-translationalγ-car-
boxylation of thrombin and coagulation factors VII, IX, X,
protein C, and protein S, an essential mechanism for their
procoagulant properties.58,59 The slow onset of action of
coumarins and severe side effects, including bleeding, drug-
drug interaction, and thrombocytopenia, often require dose
titration and close patient monitoring.60 Heparin and several of
its low molecular weight analogues such as danaparoid,61

dalteparin,62 tinzaparin,63 enoxaparin,64 fondaparinux,65 etc. with
improved safety profiles are anionic polysaccharides that activate
antithrombin III, an endogenous inhibitor of the serine proteases
of the coagulation cascade such as factors IV, IX, X, XI, and
XII. 66 Unlike coumarins, heparins have rapid onset of action
but must be administered parenterally and, like coumarins, suffer
from hemorrhagic side effects.67

Several orally active factor Xa inhibitors (Figure 2, Table 1)
are currently in clinical trials as anticoagulants.66,68-73 Factor
Xa, a trypsin-like serine protease, produces thrombin from its
zymogen prothrombin in the prothrombinase complex. It has
been hypothesized that factor Xa inhibitors should have better
safety margins than thrombin inhibitors. Because of the
singularity of factor Xa as the convergent product of the
coagulation cascade, a factor Xa inhibitor is expected to have
a high degree of antithrombotic effect. Unless all factor Xa is
inhibited, sufficient level of thrombin will be maintained for
fibrin generation and other hemostatic functions, thus allowing
an appreciable therapeutic window. The currently ongoing
clinical trials of factor Xa inhibitors will test these hypotheses.
Anticoagulants targeted to other serine proteases of the coagula-
tion cascade such as factor VIIa, factor VIIa-tissue factor (TF),
factor XIIa, and factor IXa are in various stages of preclinical
research.74

Direct thrombin inhibitors (Figure 2, Table 1) inactivate
thrombin’s enzymatic activity.75-77 The classical direct thrombin
inhibitors are based on hirudin, a 65-amino acid polypeptide
isolated from medicinal leeches. The recombinant hirudin
analogues lepirudin and bivalirudin are widely used as anti-
thrombotic agents.78,79In general, these agents suffer from lack
of oral activity and short duration. There have been several
efforts to achieve low molecular weight orally active thrombin
inhibitors.80,81 Ximelagatran, the first launched orally active
thrombin inhibitor, has recently been withdrawn from the market
because of liver toxicity.82-84 Argatroban is another low
molecular weight thrombin inhibitor that is available in intra-
venous formulation.85

Antiplatelet Agents

The second class of antithrombotic agents is antiplatelet
agents.86,87Platelets are activated by a variety of agonists such
as thrombin, ADP, thromboxane A2, epinephrine, collagen, etc.
(Figure 3). Activated platelets undergo shape change and express
GpIIb/IIIa receptors on their surfaces which bind to fibrinogen
causing platelets to aggregate at the site of injury to form a
thrombus that is further stabilized by a thrombin generated fibrin

Figure 1. Simplified scheme of the coagulation cascade. The intrinsic
pathway is initiated when blood comes into contact with the exposed
endothelial cell surface. The extrinsic pathway is initiated upon vascular
injury which leads to exposure of tissue factor (TF) to blood. The two
pathways converge at the activation of factor X to Xa which, in
association with the protein cofactor Va and calcium on platelet
phospholipid surfaces, produces thrombin from prothrombin. In a
positive feedback mechanism, thrombin activates factors VIII, V, and
XI, amplifying its own signal. In a negative feedback mechanism,
thrombin activates protein C. Activated protein C (APC), in combination
with its cofactor protein S, inactivates the procoagulant factors Va and
VIIIa, down-regulating thrombin’s production. The prothrombotic
activity of thrombin is mediated by proteolytic generation of fibrin and
platelet activation via the thrombin receptor (PAR-1). Anticoagulants
either inhibit the endogenous production of thrombin in the coagulation
cascade or inhibit the catalytic activity of thrombin. See Table 1 for
specific mechanisms of various antithrombotic agents: (-) negative
feedback; (+) positive feedback.
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network.88,89 GpIIb/IIIa antagonists such as abciximab,90 epti-
fibatide,91 and tirofiban92 are potent antiplatelet antithrombotic

agents that inhibit the end-stage processes of platelet aggrega-
tion. The currently available GpIIb/IIIa antagonists are all

Figure 2. Examples of anticoagulants in clinical trials.

Table 1. Classification of Major Antithrombotic Agents

example mechanism of action status formulation ref

Anticoagulants: Indirect Thrombin Inhibitors

warfarin vitamin K antagonist launched oral 58-60

heparin, danaparoid, dalteparin,
tinzaparin, enoxaparin, fondaparinux

antithrombin cofactor launched iv or sc 61-67

1, 2, 3, 4 (Figure 2) factor Xa inhibitors clinical trial oral 68-73

Anticoagulants: Direct Thrombin Inhibitors
lepirudin, bivalirudin, argatroban inhibits enzymatic activity of thrombin launched iv 75-79

ximelagatran withdrawn oral 82-84

5, 6, 7, 8 (Figure 2) clinical trial oral 80, 81

Antiplatelet Agents

aspirin COX-1 inhibition (inhibits TXA2 biosynthesis) launched oral 86, 87, 94, 95

abciximab, eptifibatide, tirofiban GP IIb/IIIa receptor antagonist launched iv 90-92

clopidogrel, ticlopidine P2Y12 (ADP) receptor antagonis launched oral 94-98

dipyridamole PDE inhibitor launched oral 99

himbacine derivative,
bicyclic guanidine (see below)

thrombin receptor antagonists clinical trial oral 152, 194-196,
200, 201

Fibrinolytic Agents

streptokinase promotes plasmin activity launched iv 100, 101

alteplase promotes plasmin activity launched iv 100, 101

tenecteplase promotes plasmin activity launched iv 105

staphylokinase promotes plasmin activity discovery iv 104, 105
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intravenous formulations, and efforts to achieve an orally active
GpIIb/IIIa antagonist have uniformly failed in clinical trials.93

There are several antiplatelet agents that target specific
mechanisms of platelet activation.87 Aspirin is the classical
antiplatelet agent that inhibits the biosynthesis of thromboxane
A-2 (TxA2), a platelet activator, by inhibiting the cyclooxyge-
nase-1 (COX-1) enzyme. While aspirin is an inexpensive oral
antiplatelet agent, its efficacy is rather low. ADP antagonists
clopidogrel and ticlopidine are relatively more potent oral
antiplatelet agents that inhibit ADP-induced platelet activation.
The classic CAPRIE trial established the comparative benefit
of clopidogrel versus aspirin for the secondary prevention of
ischemic events in patients with myocardial ischemia, ischemic
stroke, and peripheral arterial disease.94,95However, clopidogrel
has only modest efficacy and it carries some risk of bleeding.96

The combination of clopidogrel and aspirin is the current gold
standard of antiplatelet therapy.97,98Phosphodiesterase inhibitor
dipyridamole and its combination with aspirin have also been
used as antiplatelet agents.99

Fibrinolytic Agents

Fibrinolytic agents are the primary pharmacological approach
to reperfusion in the management of occlusive cardiovascular
disorders that present acute clinical manifestations.100,101 Al-
ternative direct mechanical percutaneous coronary intervention
(PCI) is a preferred approach if it can be done in a timely
fashion, because of the pronounced side effects associated with
fibrinolytic therapy.102 The ease of administration of fibrinolytic
agents and their universal availability make them the most
widely used first-line treatment for myocardial infarction and
thromboembolic disorders. Fibrinolytic agents facilitate the
endogenous generation of the fibrinolytic enzyme plasmin from
its proenzyme plasminogen, or they create an activated form
of plasminogen with plasmin-like catalytic activity. Most
marketed fibrinolytic agents are tissue-type plasminogen activa-
tor (t-PA), urokinase-type plasminogen activator (u-PA), or
bacterial proteins. Fibrinolytic therapy is associated with severe
shortcomings. These are short plasma half-life, induction of
“paradoxical” prothrombotic condition characterized by reoc-
clusion and systemic lysis conditions, and immunogenicity.103

There have been several efforts to generate fibrinolytic agents
with longer plasma half-life (usually in minutes) and clot
selectivity with minimal systemic circulation.104,105

Issues Associated with Current Antithrombotic Therapy

Despite the great advances made in antithrombotic research
in recent years, the currently available antithrombotic therapy
suffers from several disadvantages. The major ones are side

effects associated with bleeding.106 The coagulation mechanism
and platelet aggregation that antithrombotic agents target to
intervene are integral to the life-sustaining normal hemostatic
processes. Therefore, achieving a therapeutic window has been
proven difficult. In fact, the current paradigm of antithrombotic
therapy is “no bleeding, no efficacy.”107,108Other side effects
such as thrombocytopenia are also common.109The second issue
related to the antithrombotic therapy is lack of oral efficacy.
Most of the antithrombotic agents currently in use are either
intravenously or subcutaneously administered. The classical
anticoagulant coumadin is an oral drug, but its utility is
hampered by severe bleeding, thrombocytopenia, drug-drug
interactions, and idiosyncratic pharmacokinetic variations that
require careful dose titrations. The first orally active direct
thrombin inhibitor, ximelagatran, has been withdrawn recently
from the market.84,110,111Among the antiplatelet agents, aspirin
and clopidogrel are orally active. However, as a monotherapy
or as a combination, they fall far short of the potency of GpIIb/
IIIa antagonists.

There have been considerable efforts to discover potent, orally
active anticoagulants and antiplatelet agents. GpIIb/IIIa antago-
nists are potent antiplatelets because they work by the inhibition
of the end-stage mechanism of platelet aggregation. However,
efforts to develop orally active GpIIb/IIIa antagonists have been
unsuccessful. Therefore, there exists an unmet clinical need for
apotent, safe, andorally actiVeantithrombotic agent. Discussed
below are the recent promising developments in the thrombin
receptor (protease activated receptor-1, PAR-1) antagonist
research area that have the potential to yield safe, efficacious,
and orally active antithrombotic agents that work by antiplatelet
mechanism. This highly promising potential is due to the fact
that thrombin is the most potent platelet activator and thrombin
receptor antagonism would not interfere with thrombin-mediated
fibrin formation, a critical step in hemostasis.

Protease Activated Receptor (PAR)

In addition to its pivotal role in the coagulation cascade,
thrombin activates various cell types such as platelets, leuko-
cytes, endothelial cells, and vascular smooth muscle cells via
proteolytic activation of specific cell-surface receptors known
as protease actiVated receptors(PARs).112-115 The prototype
of these receptors is PAR-1, which is also known as the
thrombin receptor.

Although a thrombin-specific receptor on platelets that
mediates platelet activation has been known for some time, the
exact mechanism of thrombin-specific cellular activation was
unknown.116 In 1991, Shaun Coughlin’s group unveiled the
intriguing mechanistic details of thrombin’s cellular activation

Figure 3. Thrombus formation. The coagulation pathway and platelet activation mechanisms synergize in thrombus formation. Upon endothelial
injury, thrombin is locally produced. Thrombin generates fibrin from fibrinogen and activates platelets via PARs. Platelets adhere to the injured
site, binding to the exposed von Willebrand factor and collagen to form an initial hemostatic plug. Activation of platelets by collagen and thrombin
causes platelet shape change and release of platelet activating granular contents, which in turn amplify the platelet activation process. Activated
platelets aggregate via fibrinogen cross-linking. Aggregated platelets get trapped by fibrin meshwork to form a burgeoning thrombus that further
traps red blood cells and other plasma particles to form an occlusive thrombus. See footnotea for abbreviations.
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by cloning of the functional thrombin receptor.117-120The amino
acid sequence deduced from the mRNA encoding the thrombin
receptor revealed a new G-protein-coupled seven-transmembrane
domain receptor with a large extracellular domain.121 The
authors postulated that thrombin binds to the cellular receptor
through its anion binding exosite and subsequently cleaves the
extracellular domain at Arg41-Ser42 (Figure 4). The newly
unmasked amino terminus acts as a “tethered ligand” binding
intramolecularly to the proximal heptahelical segment eliciting
G-protein-coupled transmembrane signaling.122-125 Peptides
having the sequence SFLLRN that mimic the new amino
terminus of the activated receptor (known as thrombin receptor
activating peptides or TRAPs) function as agonists producing
functional responses such as platelet aggregation and mitoge-
nesis.126 Uncleavable mutant thrombin receptors failed to
respond to thrombin but were responsive to TRAPs.

After the identification of the initial protease activated
receptor (PAR-1), three additional protease activated receptors
have been identified.127 The current family of PAR comprises
PAR-1, PAR-2,128 PAR-3,129 and PAR-4.130,131Of these, PAR-
1, PAR-3, and PAR-4 are activated by thrombin. PAR-2 is
activated by trypsin, tryptase, and coagulation factors VIIa and
Xa but not by thrombin.132-136 It has been established that the
“tethered ligand” activation paradigm applies to all the PAR
receptors. There is considerable species specificity to the nature
of PAR receptors on platelets. In primates, PAR-1 is the main
thrombin receptor on platelets. It is also present on other cells
such as endothelial cells, smooth muscle cells, monocytes,
fibroblasts, etc. PAR-4 is the second thrombin receptor on
human platelets. Since PAR-4 has only weak affinity for
thrombin, it is activated only at high thrombin concentrations.
It is believed to be a “rescue receptor” that is activated in the
event of a serious vascular lesion and the resultant high thrombin
concentration. PAR-3 is found in mouse platelets where it is
the major regulator of thrombin response. PAR-4 receptors are
also expressed on mouse platelets. It has been recently postulated
that certain PAR receptors are devoid of inherent G-protein
activation but serve to function as cofactors in the activation of
another PAR receptor. For example, PAR-3 serves to facilitate
the cleavage of PAR-4 at low thrombin concentrations but does
not become activated by thrombin.137

Antithrombotic Potential for a PAR-1 Antagonist

Two distinct but inter-related mechanisms are operative in
the formation of a thrombus. These are activation of the
coagulation cascade and activation of platelets. Thrombin, the
end product of the coagulation cascade, plays a dual role in
thrombosis. It cleaves fibrinogen to fibrin and activates platelets,
which aggregate at the site of injury. Cleaved fibrin monomers
cross-link via noncovalent interactions and the action of factor
XIIIa to form an insoluble meshwork of polymerized fibrin that
traps aggregated platelets and other plasma particles, allowing
the thrombus to grow in size and stabilize. Depending on the
site of formation, a thrombus can be either fibrin-rich or platelet-
rich. Arterial thrombi, which are formed under high shear force
of blood flow, are predominantly platelet-rich. Venous thrombi,
which are formed under low shear stasis conditions, are fibrin-
rich. It is widely believed that the high-affinity PAR-1 is more
relevant to platelet activation as suggested by the following
observations.138 PAR-1 is activated at low thrombin concentra-
tions, and antibodies to the thrombin binding extracellular
domain of PAR-1 blocked this activation.139-141 PAR-1 binds
to thrombin at its anion binding exosite with high affinity. The
highly specific anionic sequence that PAR-1 has on the
C-terminal side of the cleavage site interacts with the fibrinogen-
binding exosite of thrombin to give PAR-1 a high thrombin
affinity. PAR-4 lacks such a high-affinity sequence, and
therefore, it is activated only at high thrombin concentra-
tions.142,143 Functionally, PAR-4 may be providing some
redundancy in the important platelet activation mechanism,
acting as a rescue receptor in case of a severe vascular injury.

Since platelets can be activated by multiple agonists and
thrombin has at least two PARs on human platelets, it is
important to ask whether PAR-1 antagonism by itself is
sufficient to produce substantial antithrombotic effects.144,145

Several lines of evidence point to the fact that PAR-1 antago-
nism can indeed engender strong antithrombotic effects without
the attendant bleeding effect that is pervasive with anticoagulants
and GpIIb/IIIa antagonists. PAR-1 antagonists show functional
antiplatelet activity in agonist-induced platelet aggregation
measurements, Ca2+ transient assays, and thymidine incorpora-
tion assays.146,147 In vivo studies carried out using synthetic
PAR-1 antagonist peptides showed inhibition of platelet-rich
thrombus formation in a baboon thrombosis model and a guinea
pig thrombosis model, suggesting the promise of a PAR-1
antagonist for arterial thrombosis.148,149 In another promising
study, an antibody to the PAR-1 N-terminus has been reported
to inhibit mechanical injury-induced thrombosis in a baboon
carotid artery model without affecting bleeding time and
coagulation parameters.150,139As described below, more recent
studies using potent PAR-1 antagonists in nonhuman primate
antithrombosis models have corroborated the outcome of these
studies and established the therapeutic potential of PAR-1
antagonists as promising antithrombotic agents.151-153 By
selectively inhibiting the thrombin-induced platelet activation,
a PAR-1 antagonist should exhibit strong antiplatelet action
under conditions in which thrombin-stimulated platelet activation
is critical.148 These include acute coronary syndrome and
invasive percutaneous coronary intervention (PCI) surgical
procedures. Since a PAR-1 receptor antagonist is specific for
the cellular actions of thrombin and does not interfere with the
coagulation cascade, such agents are likely to confer an added
safety margin with regard to hemorrhagic side effects, which is
a complicating factor for the currently available antithrombotic
therapy.

Figure 4. Coughlin’s model of protease activated tethered ligand.
Thrombin binds to the extracellular domain of the receptor and cleaves
it at Arg41-Ser42. The newly generated N-terminus internally binds
to the proximal receptor, causing cellular activation. Reprinted
with permission from Macmillan Publishers Ltd.:Nature
(http://www.nature.com) (Vu, T.-K. H.; Wheaton, V. I.; Hung, D. T.;
Charo, I.; Coughlin, S. R. Domains specifying thrombin-receptor
interaction.Nature 1991, 353, 674-677122). Copyright 1991 Nature
Publishing Group, Macmillan Publishers Ltd.
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Evidence from Knockout Animal Experiments

Studies conducted using PAR deficient mice provide compel-
ling evidence for the potential antithrombotic utility of a PAR-1
antagonist.154 Corresponding to the human PAR-1 and PAR-4
receptors, mouse platelets contain a high-affinity PAR-3 receptor
and the low-affinity PAR-4 receptor.131However, these receptors
work in mechanistically different ways in human platelets and
mouse platelets. Contrary to the human platelets where PAR-1
is the primary mediator of platelet activation, PAR-3 does not
independently activate mouse platelets. Instead, it acts as a
cofactor for PAR-4 mediated platelet activation.155Gene deletion
experiments have shown that PAR-4-/- mice were totally
unresponsive to even micromolar concentrations of throm-
bin.155,156On the other hand, platelets in PAR-3-/- mice could
be activated by thrombin but only at high thrombin concentra-
tions.157 PAR-4 deficient mice were protected against throm-
boplastin-induced pulmonary embolism, ferric chloride induced
thrombosis of mesenteric arterioles, and laser-injury induced
thrombosis of cremasteric microvessels.158-160 PAR-4 deficient
mice were healthy and showed no evidence for anemia or
spontaneous bleeding. Platelets in PAR-4-/- mice were normal
in number and morphology, and PAR-4-/- female mice were
found to be able to support pregnancy. However, as one would
expect, PAR-4 deficient mice showed prolonged bleeding when
challenge to hemostasis was strong.137,160

Studies done using PAR-3-/- mice have demonstrated that
complete ablation of thrombin signaling isnot required for
protection against thrombosis. In fact, PAR-3-/- mice, which
have the low-affinity PAR-4 receptors still intact, showed a level
of protection against thrombosis that was similar to that seen
in PAR-4 deficient mice, which showed complete ablation of
thrombin mediated platelet activation.161 Moreover, PAR-3-/-
mice showed no spontaneous bleeding. The fact that PAR-3
deficient mice were protected against thrombosis suggests that
even a partial attenuation of thrombin signaling in platelets might
produce a therapeutically useful antithrombotic effect. Further-
more, these studies militate against the often-raised skepticism
that dual PAR-1 and PAR-4 antagonism might be necessary to
engender an effective antiplatelet effect. In summary, the results
of functional assays and in vivo antithrombotic data of PAR-1
antagonists taken together with the gene deletion experimental
data provide strong support for the antithrombotic potential for
a PAR-1 antagonist.

PAR-1 Antagonists for the Treatment of Atheroscleorosis
and Restenosis

The pathophysiology of atherosclerosis and restenosis sug-
gests a strong involvement of the PAR-1 receptor. In addition
to its antithrombotic potential, a PAR-1 antagonist has potential
utilities in the treatment of these disorders also. For example,
PAR-1 is up-regulated in vascular smooth muscle cells in
response to vascular injury in animal models and in atheroscle-
rotic plaques from human arteries but not in normal arteries.162-164

Elevated levels of thrombin were detected in arterial injury and
in neointima of human atherosclerotic lesions.165 Thrombin-
mediated endothelial and smooth muscle cell activation results
in the secretion of various inflammatory mediators, as well as
increased vascular permeability to plasma proteins. Thrombin
stimulates adhesion of neutrophils and monocytes to vascular
endothelium, enhances fibroblast growth factor induced endo-
thelial cell proliferation, and causes mitogenesis in macrophages,
fibroblasts, and leukocyte and epithelial cells.116,148,166 The
thrombin receptor is expressed on smooth muscle cells and
macrophages from atherectomy samples isolated from human

blood vessels.167 PAR-1 knockout mice showed complete
ablation of thrombin signaling in mouse fibroblasts.143 PAR-1
deficiency and blockade appear to show protective effects in
various models of inflammation, glomerulonephritis, colitis, and
restenosis in arterial injury models.168,164

Restenosis is the reocclusion of blood vessels in patients who
have undergone invasive surgical procedures such as balloon
angioplasty, endarterectomy, or stenting. Currently stenting is
the preferred mode of surgical intervention, which reduces the
chance of restenosis substantially.169,170 Despite the recent
promising reports of drug-coated stents, there is still an unmet
clinical need for the treatment of restenosis.171 The pathology
of restenosis is characterized by extensive smooth muscle cell
proliferation and remodeling or narrowing of the vessel. It has
been reported that the thrombin receptor is expressed on the
surface of cells in humans and baboons following angioplasty
procedures.149,172Also, it has been demonstrated that hirudin, a
potent inhibitor of the enzyme activity of thrombin, prevents
angioplasty-induced smooth muscle cell proliferation in rabbits
and baboons.173,174These data provide a mechanistic rationale
for using a PAR-1 antagonist to prevent restenosis.

Since thrombin is the most potent activator of platelets, a
PAR-1 antagonist should bring about strong antiplatelet effects.
Additionally, the proliferative and inflammatory events that mark
the underlying etiology of restenosis and atherosclerosis will
be selectively inhibited at the site of the injured blood vessel.175

This dual mode of antiplatelet and antiinflammatory-antipro-
liferative action makes a PAR-1 antagonist an attractive
therapeutic target for the treatment of thrombosis and restenosis.
Since fibrin generation will be unaffected by a PAR-1 antago-
nist, such an agent is likely to confer the added safety margin
of low bleeding liability.

Thrombin Receptor (PAR-1) Antagonists

The early PAR-1 antagonists were designed on the basis of
the sequence of the tethered ligand.176 Functional assays such
as platelet aggregation, GTPase turnover, proliferation assays
using thymidine incorporation, and intracellular calcium mo-
bilization were used to identify agonists. It was originally found
that the 14 amino acid-containing peptide amide SFLLRNP-
NDKYEPF-NH2, which mimics the sequence of the N-terminal
portion of the tethered ligand, was a full agonist.177 The
pentapeptide amide SFLLR-NH2, incorporating the N-terminal
sequence of the tethered ligand, was identified as the minimal
structural motif required for retaining the full agonist
activity.178-180Further optimization was achieved by substitution
of positions 2 and 3 with unnatural amino acid-containing basic
side chains. Substitution of phenylalanine at position 2 with
p-fluorophenylalanine and leucine at position 3 withp-guani-
dinophenylalanine gave SF(f)F(Gn)LR-NH2, which is the most
potent pentapeptide with full agonist activity (Table 2).

Antagonists were designed from the structure of the optimized
pentapeptide11, incorporating an early observation that certain
acylations of the N-terminus would give antagonist properties.181

The most potent antagonists were generated by replacement of
the serine residue in11 with a trans-cinnamoyl group. Com-

Table 2. Optimization of PAR-1 Peptide Agonists

EC50
a (µM)

9 SFLLR-NH2 (human sequence) 0.40
10 SF(f)LLR-NH2 0.13
11 SF(f)F(Gn)LR-NH2 0.04
12 SF(f)F(Gn)L-NH2 0.28

a Platelet aggregation assay.
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pound13 showed an IC50 of 8 nM in the radioligand binding
assay against the PAR-1 receptor (Figure 5). Extension of the
C-terminus with a basic residue gave improved potency in the
agonist-induced platelet aggregation inhibition assay. Peptide
15, which replaces thetrans-cinnamoyl group with a phenyl-
propynoyl group, was an early tight binding peptide antagonist
(IC50 ) 4 nM).178

Peptide Mimetic Antagonists

Peptidomimetic PAR-1 antagonists were designed on the basis
of the SFLLRN motif of the tethered ligand of the PAR-1
receptor.182,183 The essential structural requirements of the
agonist peptide were established to be a free amino group at
position 1, an aromatic residue such as phenylalanine at position
2, and a basic residue such as arginine at position 5. On the
basis of distance parameters taken from models of SFLLRN
and low-energy conformations, a three-point model relating to
the distance among the amino terminus, the benzene ring of

phenylalanine, and the central carbon of the arginine guanidine
group was constructed. A 6-aminoindole linked peptide scaffold
was constructed to spatially display the three key functional
groups that formed the main scaffold of the peptide mimetic
PAR-1 antagonists.

This approach initially led to the identification of PAR-1
antagonist16 (Figure 6), which exhibited IC50 values of 0.7
and 0.3µM, respectively, in the radioligand binding assay and
the platelet aggregation inhibition assay using SFLLRN-NH2

as the agonist.182,184Further optimization led to compounds with
improved potency in both thrombin and TRAP-induced platelet
aggregation inhibition assays. However, these compounds
manifested unexpected hypotensive effects in the guinea pig
efficacy model.

This problem was circumvented by replacing the indole group
with an indazole moiety to generate an isosteric compound18.
In the platelet aggregation inhibition assay,18gave IC50 values
of 0.11 and 0.37µM against TRAP and thrombin, respectively.

Figure 5. Peptide antagonists.

Figure 6. Peptide mimetic thrombin receptor (PAR-1) antagonists from Johnson and Johnson.
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In an ex vivo guinea pig platelet aggregation model, this
compound inhibited thrombin (2 U/mL) induced platelet ag-
gregation at 0.3 mg/kg upon intravenous administration. Al-
though this compound was inactive in two standard thrombosis
models (arteriovenous shunt and Rose Bengal intravenous
photoactivation assay) in guinea pig, it blocked thrombin-
induced calcium mobilization and cell proliferation in the rat
endothelial smooth muscle cells (which contain mainly PAR-
1). More importantly, 18 showed significant reduction of
neointima thickness in a rat restenosis model after perivascular
administration, establishing the proof-of-concept that a thrombin
receptor antagonist could have therapeutic utility in the treatment
of vascular disorders such as restenosis and atherosclerosis.

The PAR-1 antagonist18was tested in cynomolgus monkeys
in a vascular injury antithrombosis model.151 The compound
was administered intravenously, and the degree of vessel
occlusion caused by electrolytic injury-induced thrombus in each
carotid artery was characterized. Compound18 significantly
reduced occlusion in the vessels of all animals, which were
completely occluded under experimental conditions in the
absence of drug. Although the plasma level of the drug was
relatively high (12µM), ex vivo platelet aggregation measure-
ments indicated complete PAR-1 inhibition under these condi-
tions. In the drug-treated group, not only was the thrombus size
reduced but the composition of the thrombus indicated a switch
from platelet-rich thrombi to platelet-depleted thrombi, dem-
onstrating the antiplatelet property of a PAR-1 antagonist.

Tighter binding peptidomimetic antagonists with a basic
amine C-terminus have been reported recently. For example,
compound19 has a PAR-1 IC50 value of 25 nM in the
radioligand binding assay.185 In the TRAP-6 induced platelet
aggregation assay, compound19showed a relatively robust IC50

of 70 nM. However, parallel enhancement of potency in the
platelet aggregation inhibition induced byR-thrombin was not
observed, which perhaps could be attributed to a fast off rate
for the compound from the PAR-1 receptor. To effectively
compete with the tethered ligand, a PAR-1 antagonist not only
needs to be tight binding but also should have a slow
dissociation from the receptor.

Non-Peptide Thrombin Receptor Antagonists

The pyrroloquinazoline analogues represented by structures
20and21were the first non-peptide PAR-1 antagonists reported
with good PAR-1 affinity and promising activity in functional
assays (Figure 7).186,187These compounds showed very specific
SAR. A p-isopropylbenzyl group at N-7, a free amino group at

C-1, and a substituted amino group at C-3 were required for
reasonable affinity. In the radioligand binding assay using [3H]-
ha-TRAP,20 and21 gave IC50 values of 70 nM (Ki ) 35 nM)
and 45 nM (Ki ) 22 nM), respectively. Analysis of saturation
binding of [3H]ha-TRAP in the presence and absence of
compound20 indicated that this compound is a competitive
inhibitor of PAR-1.

Compounds20 and21 blocked platelet aggregation induced
by PAR-1 selective agonist ha-TRAP in a concentration-
dependent fashion, with IC50 values of 300 and 150 nM,
respectively. The inhibition of platelet aggregation by com-
pounds20 and21 was selective, as evidenced by the fact that
at 10 µM they had no effect on aggregation induced by 100
µM ADP or 5µM collagen. Compounds20and21also inhibited
aggregation induced byR-thrombin with IC50 values of 300 and
700 nM, respectively. In contrast to the sustained inhibition of
ha-TRAP-induced aggregation, the inhibition of thrombin-
induced aggregation was transient and the observed delay in
aggregation was dependent on the concentration of thrombin
used. At 0.5 nM thrombin, full aggregation was delayed by
several minutes, whereas at 10 nM thrombin, no significant
delay was seen. These compounds did not inhibit aggregation
induced by PAR-4 tethered ligand peptides nor did they have
any effect on platelet aggregation induced byγ-thrombin.
Binding of these drugs to platelet was reversible, and full
reversal of inhibition required platelets to be washed free of
drug for 20 min. These compounds had no agonist activity at
concentrations as high as 3µM nor did they inhibit the catalytic
activity of thrombin.

PAR-1 antagonist20 inhibited calcium transients induced by
thrombin (3 nM) and the peptide agonist TFLLRNPNDK-NH2

(30 µM) with Ki values of 82 and 55 nM, respectively. In
contrast to platelets where the inhibition of thrombin-induced
effect was transient, inhibition of the calcium transients in
hCASMC was sustained over the time course of the assay.

Benzimidazole derivatives22 and23 have been reported to
be high-affinity thrombin receptor antagonists with potent ha-
TRAP and thrombin-induced platelet aggregation inhibition.188

Compound22 inhibited ha-TRAP and thrombin-induced platelet
aggregation with IC50 values of 265 and 600 nM, respectively.
Urea and phenylisoxazole-based PAR-1 antagonists have also
been reported.189-191 These compounds displayed submicromo-
lar IC50 values in the PAR-1 radioligand binding assay and a
TRAP-6 induced 5-hydroxytryptamine (5-HT) secretion func-
tional assay (Figure 8).

PAR-1 antagonists based on cyclic guanidine and amidine
templates have been reported in the patent literature.192-195 The
monocyclic guanidine derivatives represented by structure26
seem to have only modest potency against the PAR-1 receptor
in the assays reported (Figure 9).

The bicyclic amidine derivatives are generally more potent.
For example, compound27 has a strong affinity for the PAR-1
receptor (IC50 ) 17 nM), is potent in the rat smooth muscle
cell proliferation assay, and has good potency in the thrombin-
induced human platelet aggregation inhibition assay.

Eisai Co. has reported a PAR-1 antagonist based on the
bicyclic amidine motif to be in clinical trials for acute coronary
syndrome (Table 1).196 The structure of this compound is not
known with certainty but is believed to be28 (Figure 10) on
the basis of available information.197,198 In the radioligand
binding assay, this compound showed an IC50 of 19 nM. It
inhibited TRAP-induced human and guinea pig platelet-rich
plasma (PRP) aggregations with IC50 values of 31 and 97 nM,
respectively. It also inhibited thrombin-induced human and

Figure 7. Early non-peptide thrombin receptor antagonists. IC50 values
are shown for the receptor binding assay.
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guinea pig PRP aggregations with IC50 values of 64 and 130
nM, respectively. It was reported to be active in a guinea pig
thrombosis model at 30 and 100 mg/kg with no change in
bleeding up to 1000 mg/kg.

Himbacine-Based PAR-1 Antagonists

PAR-1 antagonists based on the core structure of the natural
product himbacine (29) has been reported. The original interest
in himbacine was for its antimuscarinic properties, for central
nervous system indications. A total synthesis of himbacine was
carried out, and several analogues were synthesized.199,200One
racemic analogue of himbacine that has the piperidine ring
system replaced by the corresponding substituted pyridine ring
(31) was identified as a PAR-1 lead in a high-throughput
assay.153 Replacing the highly basic piperidine unit with a less
basic pyridine moiety rendered this compound and the subse-
quently synthesized pyridine analogues inactive against the
muscarinic receptors, which makes the PAR-1 antagonists
selective over muscarinic receptors.

A radioligand binding assay that employed platelet membrane-
bound PAR-1 receptors and radiolabeled high-affinity thrombin
receptor activating peptide ([3H]ha-TRAP) was used for the
primary screening.153,201 Washed human platelet aggregation
induced by ha-TRAP was used as a routine functional assay.
An ex vivo cynomolgus monkey platelet aggregation assay was
used to study the oral activity of promising compounds. The
initial lead compound31 inhibited PAR-1 receptor with an IC50

of 300 nM in the radioligand binding assay (Figure 11).152

Structure-activity relationship studies led to the identification
of 6-ethyl substituted analogue33 with an IC50 of 85 nM. The
racemic compounds32 and33 (Figure 12) were resolved using
chiral HPLC, and it was found that the enantiomer with absolute
chirality opposite to that of himbacine (ent-himbacine) in the
tricyclic system was more active. For example, in the radioligand
binding assay33a, with ent-himbacine absolute chirality,
inhibited PAR-1 binding with an IC50 of 20 nM whereas its
enantiomer33b was 20 times less active. Subsequently, a
number of analogues were resolved, and it was convincingly
established by enantioselective synthesis that theent-himbacine
absolute chirality is important for PAR-1 antagonism.

Compound33a was evaluated in a cynomolgus monkey ex
vivo platelet aggregation model after intravenous infusion (10

Figure 8. Urea and isoxazole based thrombin receptor antagonists.

Figure 9. Guanidine and amidine based thrombin receptor antagonists.

Figure 10. Presumed structure of Eisai’s clinical candidate.

Figure 11. Himbacine-based PAR-1 antagonists.

Figure 12. Enantioselective PAR-1 affinity for himbacine derivatives.
The tricyclic system requiresent-himbacine absolute stereochemistry.

MiniperspectiVe Journal of Medicinal Chemistry, 2006, Vol. 49, No. 185397



mg/kg, 30 min). Nearly complete inhibition of platelet aggrega-
tion, induced by exogenously added peptide agonist (ha-TRAP)
to the plasma drawn from the drug-treated group, was noted
for 2 h. However, this compound had no oral activity, presum-
ably because of rapid metabolism.

Although C-5 alkyl substitution and C-6 aryl substitution gave
compounds with diminished PAR-1 activity (e.g.,34, 35),
compounds with C-5 aryl substitution showed promising PAR-1
affinity (e.g., 36) (Figure 13). Additionally, these compounds
showed promising oral bioavailability. Further optimization led
to C-5 phenyl derivatives carrying CF3 and halogen substituents
at the meta and ortho positions with excellent PAR-1 affinity
and good oral bioavailability in a rat pharmacokinetic model.

Phenylpyridine derivative36showed excellent PAR-1 affinity
and good oral bioavailability. A benchmark compound in the
himbacine series is37 (Figure 13).153 This compound had aKi

of 2.7 nM against the PAR-1 receptor. It inhibited thrombin
and haTRAP induced aggregation of human platelets with an
IC50 of 44 and 24 nM, respectively. It was highly active in the
thrombin-mediated calcium transient assay (Kd ) 2.6 nM) and
the proliferation assay (Ki ) 13.0 nM) in human coronary artery
smooth muscle cells. This compound showed 30% oral bio-
availability in rats and 50% in monkeys. In the ex vivo platelet
aggregation assay in cynomolgus monkey,37showed complete
and sustained inhibition of platelet aggregation at 3 mg/kg after
oral administration. This compound also showed potent dose-
dependent inhibition of platelet deposition on thrombogenic
surfaces in an arteriovenous shunt model in baboons after oral
administration.153 Compound37 is the most potent PAR-1
antagonist reported to date.

Several variants of the himbacine tricyclic motif (Figure 14)
have also been disclosed.195 Type I compounds have the C-ring
substituted with halogen atoms or functional groups such as
hydroxyl, carboxylic acid, or amine groups. A type II structure
has a heteroatom such as-NR-, -O-, or -S- replacing one
of the C-ring carbon atoms. A type III structure has an aromatic
C-ring, and the type IV structural class is devoid of a C-ring,
having the B-ring substituted with lower alkyl groups. The
absolute and relative stereochemical requirements for types I,
II, and IV are the same, whereas these requirements are different
for arylhimbacines (type III). The preferred compounds in all
of these series are reported to have IC50 values from 4 to 100
nM and to have strong inhibition of platelet aggregation in the
ex vivo cynomolgus monkey platelet aggregation model after
oral administration.201 A PAR-1 antagonist derived from the
himbacine series has been reported to be in clinical trials for
acute coronary syndrome.202

Conclusion

In summary, PAR-1 antagonists hold considerable promise
as antiplatelet antithrombotic agents. There exist multiple
preclinical data to support this view. These include strong in
vitro and ex vivo effects in platelet aggregation assays and other
functional assays such as calcium transient assay and thymidine
incorporation assay.153,187PAR-1 antagonists have shown in vivo
antithrombotic efficacy in photochemical injury models in
guinea pig, in a vascular injury antithrombosis model in
cynomolgus monkeys, and in several oral antithrombosis models
in baboons.151,152,198 Template bleeding time remained un-
changed in these studies, which suggests the promising safety
margin for a PAR-1 antagonist. Knockout mouse experiments
have also provided strong support for the antithrombosis
potential of PAR-1 antagonists. PAR-3 knockout mice were
protected against thrombosis without any change in bleeding
parameters or platelet functions.138

There has been considerable progress in developing
PAR-1antagonists as antithrombotic agents. Two pharmaceutical
companies have announced that they have orally active PAR-1
antagonists in clinical trials for acute coronary syndrome.202,203

Although PAR-1 antagonism is a promising therapeutic area,
pharmaceutical research in identifying a PAR-1 antagonist has
been somewhat limited. This may be because of the difficulty
in obtaining a good lead or due to the perceived difficulty in
finding an antagonist for the tethered ligand. A unique feature
of the tethered ligand mechanism is that a high-affinity
antagonist per se may not be sufficient. To effectively compete
with the tethered ligand’s intramolecular binding to the receptor,
one needs to identify a compound with a slow dissociation rate
from the receptor. This unique pharmacodynamic property adds
another layer of difficulty in discovering a therapeutically useful
PAR-1 antagonist. With very little information about conforma-
tion of the receptor available, one is left with a highly empirical
approach. Additionally, one needs to identify an orally active
compound in order to effectively compete in the antithrombotic
arena. It is apparent that these difficulties have been overcome
in advancing PAR-1 antagonists to clinical trials.

Thrombin is the most potent activator of platelets. Therefore,
a PAR-1 antagonist should confer a potent antithrombotic effect
in platelet-rich arterial thrombosis. An additional advantage of
the leading PAR-1 antagonists is their oral formulation. In this
regard, it is pointed out that all efforts to identify orally active
GpIIb/IIIa antagonists failed in clinical trials.93 Therefore, there

Figure 13. SAR optimization of himbacine-derived thrombin receptor
antagonists.

Figure 14. Different tricyclic variants of himbacine-derived PAR-1
antagonists.
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exists an unmet clinical need for a potent, safe, oral antithrom-
botic agent with GpIIb/IIIa antagonist-like potency and no
bleeding liability. Since PAR-1 antagonism does not compro-
mise thrombin’s ability to generate fibrin and does not interfere
with platelet activation mediated by other agonists, a PAR-1
antagonist is likely to have less bleeding liability in comparison
to existing antithrombotic agents. Furthermore, the anti-inflam-
matory and antiproliferative properties of a PAR-1 antagonist
should find additional utility in the treatment of atherosclerosis
and restenosis. These expectations need to be validated with
the help of ongoing clinical studies.
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